ELECTRONIC DEVICES AND AMPLIFIERCIRCUITS LABORATORY

Course Code	19EC3352	Year	II	Semester	I	
Course	Program	Branch	ECE	Course Type	Lab	
Category	Core					
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil	
Continuous	25	Semester	50	Total Marks	75	
Internal		End				
Evaluation		Evaluation				

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Measure the device small signal parameters of BJT and MOSFET					
CO2	Design, simulate and implement BJT and MOSFET amplifiers for the given					
	specifications.					
CO3	Construct NMOS differential amplifier circuits for the given specifications.					
CO4	Fabricate PCB for multivibrator circuits using BJT.					

Contribution of Course Outcomes towards achievement of Program Outcomes &														
Strength o	Strength of correlations (3-High, 2: Medium, 1:Low)													
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3			1	1	1	2	2	2	2
CO2	3	3	2	3	3			1	1	1	2	2	2	2
CO3	3	3	2	3	3			1	1	1	2	2	2	2
CO4	3	3	2	3	3			1	1	1	2	2	2	2

	Syllabus					
Expt. No.	Contents	Mapped CO				
I	Voltage-Current Characteristics of BJT / Measurement of scale current & common emitter current gain	CO1				
II	Measurement of small signal parameters (g_m, r_o, r_π, r_e) of BJT at a given operating (Q) point	CO1				
III	Design, Simulate and Implement BJT amplifier and Inverter logic gate	CO1				
IV	Voltage-Current Characteristics of MOSFET / Measurement of threshold voltage	CO1				
V	Measurement of small signal parameters (g_m, r_o, g_{mb}) of MOSFET at a given operating point.	CO1				
VI	Design and simulation of basic NMOS current mirror, cascode NMOS current mirror and current steering circuit	CO2				
VII	Design and Simulation of Common Source Amplifier for Gain, Power dissipation requirements	CO2				
VIII	Design and Simulation of Common Drain Amplifier (Voltage Buffer) for Gain, Output Impedance, Level Shift requirements	CO2				
IX	Analysis and Verification of Basic NMOS Differential Pair for Gain, Input Common Mode Range, Maximum Input differential voltage requirements	CO3				
X	Design and Simulation of Differential Amplifier with active current mirror load for gain, power dissipation CMRR requirements.	CO3				
XI	Design, Simulation and PCB fabrication of a BJT Multivibrator Circuit	CO4				

Learning Resources

Text Books

1.Adel S. Sedra, Kenneth C. Smith, Arun N. Chandorkar, Microelectronic Circuits, 6/e, Oxford University Press, 2013.

Reference Books

- 1. BehzadRazavi, Fundamentals of Microelectronics, 2/e, Wiley Student Edition, 2013.
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices and Circuits Theory, 10/e, Pearson Education, 2009.
- 3. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.

e- Resources & other digital material

https://www.researchgate.net/publication/314154179_Electronics_Lab_Manual http://abexp.aiaiai.dk/electronic_devices_and_circuits_lab_manual_bgpltd.pdf
